Home | About Us | Contact Us | Help | Advertising | Authors | Terms of Use | Privacy Policy LOGIN TO YOUR ACCOUNT
 
Approvals/Requirements Satisfied by eRADIMAGING Courses
~ ASRT accreditation for ARRT Category A credit (All Courses)   ~ MDCB accreditation by the Medical Dosimetrist Certification (Selected Courses)
~ ARMRIT accepted (All MRI Courses) ~ CAMRT and Sonography Canada recognize the ASRT approval (All Courses)
~ ARDMS accepted (All Courses) ~ Florida approval for all courses 1 credit or more
~ NMTCB accepted (All Courses) ~ California CE requirements met for all radiography courses


All Things Imaging in Multiple Sclerosis

Sahra Omar, RT(R)(MR) and Ellen Condon, RT(R)(MR)

   *Research MRI Technologist Functional MRI Facility, National Institute of Mental Health/National Institutes of Health, Bethesda, Maryland.
   †Research MRI Technologist Functional MRI Facility, National Institute of Mental Health/National Institutes of Health, Bethesda, Maryland.
   Address correspondence to: Sahra Omar, RT(R)(MR), Research MRI Technologist Functional MRI Facility, National Institute of Mental Health/National Institutes of Health, 10 Center Drive, Building 10, Bethesda, MD 20892-1148. E-mail: omars@mail.nih.gov.

Disclosure Statement: Ms Omar reports having no significant financial or advisory relationships with corporate organizations related to this activity. Ms Condon reports having no significant financial or advisory relationships with corporate organizations related to this activity.

ABSTRACT

Multiple sclerosis (MS) is a condition marked by an extensive spectrum of neurologic signs and symptoms, and is believed to be caused by an autoimmune attack on the myelin and axons of the central nervous system. MS is the most common cause of nontraumatic disability in individuals of young and middle age. Although a careful neurologic history and physical examination are essential to making this sometimes elusive diagnosis, ever since magnetic resonance imaging (MRI) became more widely available in the 1980s, neuroimaging techniques have also played a prominent role in confirming the diagnosis, studying disease progression longitudinally, and assisting in the research and development of novel therapies. Today, sophisticated applications of magnetic resonance technology, such as magnetization transfer imaging, magnetic resonance spectroscopy, and diffusion tensor imaging, provide quantitative information about the extent of damage that occurs in MS (sometimes in normal-appearing white matter) that may or may not be visible in T1- and T2-weighted images. Likewise, lesions may be present in normal appearing gray matter and in the spinal cord, and may best be detected using fluid-attenuated inversion-recovery imaging. Functional MRI and positron emission tomography (the latter of which is an imaging technique separate from MRI) are mainly research tools that help scientists and clinicians to better understand the subtle (behavioral and cognitive) aspects of MS and to correlate the efficacy of new therapeutic interventions with evidence of MS progression that is not apparent using clinical or standard magnetic resonance information. This article will review the history, anatomy, physiology, and the pathophysiology of MS as background for an exploration of the imaging techniques key to the diagnosis and treatment of this sometimes devastating disease.

Full Course Content available to active members of eRADIMAGING.com



Sample eRADIMAGING Course *

* This sample course is for reference purposes only. It is not currently available for earning CE credits. To earn ARRT CE credits please subscribe to eRADIMAGING where you will see a complete listing of all active and eligible CE courses.
 

Home | Contact Us | About Us | Contributors | Advertising | Events | FAQ | Terms of Use | Privacy Policy | My Account
Copyright © 2014 - ERADIMAGING.COM