Rad Tech CE, ASRT, ARRT® CE, Category A Credits | Radiology Continuing Education

Approvals/Requirements Satisfied by eRADIMAGING Courses

  • ASRT approval for ARRT Category A credit
  • All Courses eligible of international radiographers' CPD requirements
  • ASRT and MDCB are approved continuing education providers of ARRT and all courses are accepted by ARRT
  • California CE requirements met for all radiography courses
  • NMTCB accepted (All Courses)
  • All Courses available for RRAs
  • ARMRIT accepted (All MRI Courses)
  • MDCB approval by the Medical Dosimetrist Certification (Selected Courses)
  • Florida approval for all courses 1 credit or more
  • ARDMS accepted (All Courses)
  • CAMRT and Sonography Canada recognize the ASRT approval (All Courses)
  • Approval: This course is approved by MDCB - an approved continuing education provider of ARRT.
  • Release Date: 5/2/2016
  • Expiration Date: 5/6/2021
  • Credit Hours: 1 Credit
  • Course Description and objectives:

    Course Description
    Medical imaging fusion plays an important role in the diagnosis and treatment of patients with cancer who are receiving radiation therapy. Image fusion and registration are essential in the daily treatment planning duties of a medical dosimetrist. The image fusion and registration process involves combining multimodality images to delineate the anatomical and physiological differences from one dataset to another. This article will discuss imaging modalities, such as computed tomography, magnetic resonance imaging, positron emission tomography, single photon emission computed tomography, and sonography, and examine how significant their roles are in the treatment and management of radiation therapy patients. Image registration processes will be introduced as well as the recommended quality assurance procedures. The DICOM (Digital Imaging and Communications in Medicine) networking requirements will be explained as they apply to image fusion, registration, and storage. DICOM-RT (Radiotherapy) networking will be discussed as it applies to the radiation therapy department. Various case studies are presented to demonstrate the technique and benefit of image fusion in the treatment and management of the radiation therapy patient.

    Learning Objectives
    After reading this article, the participant should be able to:

    • Describe image fusion and image registration.
    • Identify imaging modalities used for image fusion.
    • Compare and contrast the strengths and limitations of each imaging modality as it applies to the detection, diagnosis, and treatment of the radiation therapy patient.
    • Describe image registration processes.
    • Discuss networking and quality assurance requirements for image fusion.

  • CE Information:

    In order to receive CE credit, you must first complete the activity content. When completed, go to the "Take CE Test!" link to access the post-test.

    Submit the completed answers to determine if you have passed the post-test assessment. You must obtain a score of 75% to receive the CE credit. You will have no more than 3 attempts to successfully complete the post-test.

    Approved by the Medical Dosimetrist Certification Board for 1.0 MDCB credit.

  • Structured Education Credit Valuations:

    CategoryContent AreaCredits
    Nuclear MedicineImage Production1
    Radiation TherapyProcedures1

  • CQR Credit Valuations:

    CategorySubcategoryCredits
    Nuclear MedicineInstrumentation 1
    Radiation TherapyPrescription and Dose Calculation 1
    Radiologist AssistantPatient Interactions and Management 1


The Role of Image Fusion in Medical Dosimetry

Nishele Lenards, MS, CMD, RT(R)(T)

*University of Wisconsin-La Crosse, Medical Dosimetry Program, College of Science and Health -Department of Health Professions, La Crosse, Wisconsin.
Address correspondence to: Nishele Lenards, MS, CMD, RT(R)(T), University of Wisconsin-La Crosse, Medical Dosimetry Program, College of Science and Health -Department of Health Professions, 1725 State Street - 4033 HSC, La Crosse, WI 54601. E-mail: lenards.nish@uwlax.edu.

Disclosure Statement: Ms Lenards reports having no significant financial or advisory relationships with corporate organizations related to this activity.

ABSTRACT

Medical imaging fusion plays an important role in the diagnosis and treatment of patients with cancer who are receiving radiation therapy. Image fusion and registration are essential in the daily treatment planning duties of a medical dosimetrist. The image fusion and registration process involves combining multimodality images to delineate the anatomical and physiological differences from one dataset to another. This article will discuss imaging modalities, such as computed tomography, magnetic resonance imaging, positron emission tomography, single photon emission computed tomography, and sonography, and examine how significant their roles are in the treatment and management of radiation therapy patients. Image registration processes will be introduced as well as the recommended quality assurance procedures. The DICOM (Digital Imaging and Communications in Medicine) networking requirements will be explained as they apply to image fusion, registration, and storage. DICOM-RT (Radiotherapy) networking will be discussed as it applies to the radiation therapy department. Various case studies are presented to demonstrate the technique and benefit of image fusion in the treatment and management of the radiation therapy patient.

View the full content

Sample eRADIMAGING Course *

* This sample course is for reference purposes only. It is not currently available for earning CE credits. To earn ARRT CE credits please subscribe to eRADIMAGING where you will see a complete listing of all active and eligible CE courses.

Become a member

Satisfy your CE requirements today!

Join now

We offer special group rates, call or email.

908-253-9001

webmaster@eradimaging.com

Newsletter

Enter your email address to receive our new course alerts.