Rad Tech CE, ASRT, ARRT® CE, Category A Credits | Radiology Continuing Education

Approvals/Requirements Satisfied by eRADIMAGING Courses

  • ASRT approval for ARRT Category A credit
  • All Courses eligible of international radiographers' CPD requirements
  • ASRT and MDCB are approved continuing education providers of ARRT and all courses are accepted by ARRT
  • California CE requirements met for all radiography courses
  • NMTCB accepted (All Courses)
  • All Courses available for RRAs
  • ARMRIT accepted (All MRI Courses)
  • MDCB approval by the Medical Dosimetrist Certification (Selected Courses)
  • Florida approval for all courses 1 credit or more
  • ARDMS accepted (All Courses)
  • CAMRT and Sonography Canada recognize the ASRT approval (All Courses)
  • Approval: This course is approved by MDCB - an approved continuing education provider of ARRT.
  • Release Date: 5/2/2016
  • Expiration Date: 5/4/2019

The Role and Value of Nuclear Medicine in the Imaging of Sentinel Nodes and Breast Cancer

Andrew Tootell, MSc PGCert BSc(Hons), Joanne Driver, Judith F. Kelly, MSc, PgC, DCR, Randeep K. Kulshrestha, MBBS(Lon), FRCR, and Peter Hogg

*Lecturer, Programme Leader, MSc/PGD Advanced Practice Nuclear Medicine, School of Health, Sport & Rehabilitation Sciences, University of Salford, Frederick Road Campus, Salford, United Kingdom.
Lecturer in Radiography, School of Health, Sport & Rehabilitation Sciences, University of Salford, Frederick Road Campus, Salford, United Kingdom.
Consultant Breast Radiographer and Deputy Clinical Director, Chester Breast Imaging Unit, Countess of Chester Hospital, Chester, Cheshire, United Kingdom.
§Consultant Radiologist and Clinical Isotope Lead, North Manchester General Hospital, Pennine Acute NHS Trust, Manchester, United Kingdom.
¦Professor of Radiography and University Lead for Medical Imaging Research, School of Health, Sport & Rehabilitation Sciences, University of Salford, Frederick Road Campus, Salford, United Kingdom.
Address correspondence to: Andrew Tootell, MSc PGCert BSc(Hons), Lecturer, Programme Leader, MSc/PGD Advanced Practice Nuclear Medicine,. School of Health, Sport & Rehabilitation Sciences, The University of Salford, Directorate of Radiography, Frederick Road, SALFORD, M6 6PU. E-mail: A.K.Tootell@Salford.ac.uk.

Disclosures: The authors report having no financial or advisory relationships with corporate organizations related to this activity.


Diagnosis and treatment of cancer has continually improved over the past few decades. This is due to several reasons, including better treatment regimes. Decisions regarding treatments have resulted in more personalized and individual treatment options and the medical decisions relating to treatment options are usually informed through the availability of high-quality clinical information. Such information seeks to give the physician and surgeon an accurate indication of the primary cancer, whether it has spread, and if it has spread, to what extent. Treatment regimes have become more elaborate, with a move away from overly invasive surgical procedures. Less invasive surgery demands accurate information on the progress of the cancer, and this information often includes the analysis of lymph nodes, particularly sentinel nodes. Histological analysis of the sentinel nodes is well documented in the literature for the management of cancer. When a sentinel node has cancer cells present, it usually results in the surgeon removing all the nodes in that region; conversely, when the sentinel node is negative, the nodes are spared. Such sparing minimizes surgical trauma and also postsurgical complications, such as edema and paresthesia. Different ways to detect, localize, and biopsy or excise sentinel nodes for histological purposes have been adopted into clinical practice. Ultrasound, "blue dye," and various nuclear medicine techniques are prominent in their individual or combined ability to fulfill this exploratory diagnostic role. The options in nuclear medicine imaging (planar imaging, single photon emission computed tomography, and single photon emission computed tomography-computed tomography) all have values in sentinel node detection and localization. With a particular focus on breast cancer, this article examines the role and value of nuclear medicine in the detection and localization of sentinel nodes.

View the full content

Sample eRADIMAGING Course *

* This sample course is for reference purposes only. It is not currently available for earning CE credits. To earn ARRT CE credits please subscribe to eRADIMAGING where you will see a complete listing of all active and eligible CE courses.

Become a member

Satisfy your CE requirements today!

Join now

We offer special group rates, call or email.




Enter your email address to receive our new course alerts.